PAMĚテ̌ S FLEXIBINIM DISKEM

SMEP JSEP

CM 5625
EC 5083
NÁVOD K OBSLUZ̈:E
TECHNICKÝ POPIS NÁVOD PRO MONTÁŽ A INSTALACI PŘEDPIS PRO ÚDRŽBU

SMEP
 JSEP

CONSUL 7115

CM 5625

EC 5083

NÁVOD K OBSLUZE
TECHNICKÝ POPIS NÁVOD PRO MONTÁŽ A INSTALACI PŘEDPIS PRO ÚDRŽBU

JK 403314071150
Strana

1. ÚVOD 5
2. TECHNICKÉ ÚDAJE PAMËTI CONSUL 7115 A CONSUL 7114 6
3. TECHNICKÝ POPIS 10
4. NÂVOD K OBSLUZE 18
Všeobecné pokyny 18
5. NÁVOD PRO MONTÁŽ A INSTALACI 20
Seřizeni paměti 20
Nastaveni paměti 22
Závêr 26
6. PŘEDPIS PRO ÚDRŽBU 27
7. DOPORUČENÉ PŘfSTROJE A ZAŘfZENf 28
8. PŘfLOHY 29
9. ƯVOD
1.1 Tyto smêrnice pro použivání zahrnuji v sobě technický popis, návod k obsluze, předpis pro údržbu a návod pro montáž na místě použití. Spolu s formulárem tvoři exploatační dokumentaci paměti s pružny̌m diskem CONSUL 7115 (EC 5083) a CONSUL 7114 (EC 5082).
1.2 Určeni

Paměti s pružny̌m diskem CONSUL 7115 a CONSUL 7114 jsou určeny pro zápis a čteni informaci z jednostranných (C 7114) i dvoustranných (C 7115) pružných diskô, zaznamenaných metodou FM nebo MFM (M2FM). Paměti jsou určeny pro použitív zařizenich pro sbêr a zpracováni dat, jako vnější paměti"minipočitačô, numericky fizizených obrábĕcích strojô a pro řadu dalších použití.
2. TECHNICKE ÚDAJE PAMĚTI CONSUL 7115 A CONSUL 7114
2.1 Skutečne̛ namê řené hodnoty základnich technických parametrâ jsou přiloženy ke každé paméti.

2.2 Provozni podmínky

2.2.1 Paměti jsou navrženy pro nepřetržitý provoz v normálních klimatických podmínkách a \checkmark prostředi bez výparå kyselin a jiných látek, vyvolávajicich korozi při prašnosti prostředí maximálně $0,75 \mathrm{mg} / \mathrm{m}^{3}$ a maximálnim rozměrem částic 3 ,um a vibracích podlahy do $0,1 \mathrm{~mm}$ při $10-25 \mathrm{~Hz}$.
2.2.2 Normálni klimatické podmínky jsou charakterizovány:

- teplotou okolniho vzduchu

$$
\begin{array}{rl}
+20 & \pm{ }^{\circ} \mathrm{C} \\
60 & \pm 15 \% \\
84 & \mathrm{az} 107 \mathrm{kPa}
\end{array}
$$

- relativni vlhkosti vzduchu
- atmosférickým tlakem
2.2.3 Mezni klimatické podmínky provozu paměti jsou:
- teplota okolního vzduchu
+5 až $+45{ }^{\circ} \mathrm{G}$
- relativní vlhkost okolního ovzduší 40 až 95% při teplotě $30{ }^{\circ} \mathrm{C}$ max. bez kondenzace
- atmosférický tlak 84 až 107 kPa
2.3 Pro paměti je možno použít diskety (magnetické pružné disky) typu IBM OISKETTE pro jednostranný záznam a typu IBM DISKETTE $2 D$ pro dvoustranný záznam, nebo jejich ekvivalenty, odpovidajici normám ISO/DIS 5654 a ISO/DIS 7065.

2.5 Signály interface a jejich určení

Interfaceové obvody a úroveñ interfaceových signáló jsou provedeny v souladu s normou MM SM EVM, redakce 84, přičemž

- nizká úroveñ $(\log 1)$ je od $0,0 \mathrm{~V}$ do $+0,4 \mathrm{~V}$
- vysoká úroveñ $(\log 0)$ je od $+2,4 \mathrm{~V}$ do $+5,5 \mathrm{~V}$

Popis signálâ je v následujicim odstavci a jejich vyvedeni na jednotlivé špičky interfaceového konektoru je uvedeno v tabulce 1.

2.5.1 Popis signálâ

A) Vstupní signály:

1. VÝBĚR JEDNOTKY (PAMËTI) - nizká úroveñ tohoto signálu dovoluje přenos signálů mezi řidici jednotkou a vybranou paměti.
2. KROK - impulzni signál, kterỳ při nizké úrovni zpûsobuje přemístění magnetických hlav na sousedni dráhu: Směr pohybu hlav závisí na logické úrovni signálâ na lince SMĚR. Délka impulzu musí být minimálně 1,us. Opakovací perioda signálú musí by̌t větší než 5 ms .
3. SMĔR - signál, který určuje smêr pohybu magnetických hlav při příchodu impulzů na lince KROKá Nizká úroveñ (log 1) na této lince určuje smêr pohybu hlav do středu disku, vysoká úroveñ (log 0) určuje smêr pohybu hlav k okraji disku. Úroveñ tohoto signálu se nesmí měnit během aktivní úrovně signálu KROK. Jakákoliv zmêna logické úrovně na této lince musí být ukončena minimálně 0,5 , us před přichodem impulzu KROK. Vztahy mezi signály KROK a SMĚR jsou uvedeny na obr. 1.

Výbĕr jednotky

Obr. 1: Časové relace mezi signály SMẸ̌R a KROK
4. VYBĚR POVRCHU - signál určujíci, který povrch dvoustranného disku bude používán pro čtení nebo zápis dat. Nízká úroveñ tohoto signálu označuje povrch "1" a vysoká úroveñ pourch "O". Rozlišeni povrchu "1" a "O" je stanoveno příslušnou normou ISO. V připadě přepínáni z povrchu "O" na povrch "1" a naopak je třeba zabezpečit zpožde̛ni zápisu nebo čtení minimálnè o 200 ,us. Signál je použitý jen u pamêti C 7115.
5. PŘIKLOPENI HLAV - signál, který svoji nizkou úrovní zpísobi přiklopení hlav k disku.
6. ZÁPIS - signál, který svoji nizkou úrovni aktivizuje zápisové a mazaci obvody paměti a v připadě výskytu impulzh̆ KROK blokuje vystavovaci obvody a zamezuje přemístění hlav na jinou stopu.
7. JEDNOTKA V ČINNOSTI - signál, kterỳ svoji ñizkou úrovní umožñuje uživateli realizovat nĕjakou indikační funkci souvisejicí s výběrem jednotky. Je to výběrový signál a k jeho použiti je třeba použít propojku 524 na desce plošných spojâ.

Tabulka 1
Rozložení interfaceových signálâ na špičkách interfaceového konektoru

Špička konektoru	Název signálu
10	Dvoustranny disk (jen u C 7115)
12°	Záměna disku
14	Vybběr pourchu (jen u C 7115) JIOE1 (32)
16	Jednotka v činnosti
18	Príiklopeni hlav HEAD LOAX (16.)
20	Index INDEX (\%.)
22	Jednotka pritpravena READY
26	Vybeer paměti $1 \quad A(10$.
28	Vybuer paměti $2 \quad B$ (12.)
36	Vybbèr paměti $3 \quad C$ (14.)
32	Vybêr paměti 4 D) (6,
34	Směr DIR (18.)
36	Krok STEP (20,)
38	Data zápisu WR. DATA (22.)
40	Zápis Wr GATE (24.)
42	Stopa 00 TRACK \varnothing (26.$)$
44	Ochrana zápisu WR. PROTECT (28.)
46	Čtená data 2EAD DAIA (30.)
1,3,5, .. 49	Všechny liché špičky jsou na vf zemi

Cosnocimi poolle 5%
8. DATA ZAPISU - impulzy, které při každém přechodu z vysoké úrovně na nizkou způsobi změnu smêru zápisového proudu ve vinuti magnetické hlavy. Šiřrka impulzâ je $600 \pm 100 \mathrm{~ns}$. Impulzy mohou být KODOVANY METODOU FM, nebo metodou MFM nebo $M^{2} F M$. Při kódování dat metodou MFM nebo $M^{2} F M$ je třeba provést pro data zápisu předkompenzaci. Pro hlavy typu WOELKE a diskety DYSAN a SCOTCH doporučujeme velikost předkompenzace od 100 do 250 ns . Časové relace mezi signály, používanẏmi při operaci zápis jsou uvedeny na obr. 2.

Obr. 2: Časové relace mezi signály, použivanými při operaci ZAPIS
B) Výstupni signály:

1. JEDNOTKA PŘIPRAVENA - při nizké úrovni tohoto signálu oznamuje pamĕť řidici jednotce, že je připravena k činnosti. Aktivni hladina signálu je generována za tĕchto podmínek:

- pamět je správnĕ vybraná a je uzavřený otvor pro zasunuti diskety,
- do pamêti jsou přivedena napájeci napěti,
- při použiti jednostranného disku je vybraný správný povrch ("O"),
- zasunutý disk je upnutý a jsou vysilány indexové impulsy.

2. INDEX - impulz, který se generuje v paměti při každé otáčce disku. Sestupní hrana impulzu signalizuje počátek stopy. Nizká úroveñ impulzâ má šị̛̛̣u $1,8 \pm 0,6 \mathrm{~ms}$ a opakovaci perioda impulzô je $166,7 \mathrm{~ms} \pm 2,0 \%$.
3. STOPA 00 - signál, jehož nizká úroveñ znamená, že č/z hlavy se nacházeji na stopě 00 (stopa u vnějšiho okraje disku).
4. OCHRANA ZÁPISU - signál, kterého nizká úroveñ označuje, že ve vybrané paměti se nacházi disketa, která má přiznak ochrany zápisu v souladu s doporučením ISO DIS 5654/I añ ISO DIS 7065/I. NemÔže být proto provedena operace ZAPIS.
5. ČTENA DATA - série impulzâ nizké úrovně délky $300-900$ ns (nominální hodnota $T=2$, us). Každá změna polarity magnetického toku, odpovidajici zapsané informaci na disku, generuje jeden impulz. Maximálni fázová odchylka přední hrany každého impulzu mâže být $\pm 10 \%$ od nominálni polohy. Casové relace mezi signály použivanými při operaci ČTENf jsou uvedeny na obr. 3.

Obr. 3: Časová relace mezi signály, použivanými při operaci čtení
6. ZAMĚ̌NA DISKU - nizká úroveñ signálu označuje, že v paměti byly porušeny podminky vzniku signálu JEDNOTKA PŘIPRAVENA. Linka se aktivizuje přivedením signálu VYBĚR JEDNOTKY.
7. DVOUSTRANNY DISK - signál, který při nizké úrovni oznamuje, že ve vybrané pamèti rotuje dvoustranny̆ disk a při vysoké úrovni jednostranný. Signál se využivá jen u paměti C 7115.
3. TECHNICKY POPIS
3.1 Popis panêti CONSUL 7115 a CONSUL 7114

Pamēti s pružným diskem CONSUL 7115 a CONSUL 7114 sestávaji z mechanické a elektronické Části. Mechanická část zajištuje:

- středëni, upnuti a otáčeni pružného disku,
- vystaveni nosiče magnetických hlav na požadovaný válec (tvořený 2-mi stopami u C 7115) nebo stopu (u C 7114),
- kontakt magnetických hlav s pružným diskem,
- uchyceni a nastaveni optoelektronických členå pro snimáni indexových impulzâ, otvorâ blokováni zápisu a polohu vystavení na stopu 00 a stopy vyšši než 43,
- uchyceni a nastaveni mikrospinače uzavřeni diskety,
- uchyceni hnaciho a krokového motoru,
- uchyceni desek elektroniky.

Elektronická část paměti zajištuje:

- Fizeni otácek pružného disku,
- přepinâni fázi hnacího motoru,
- zápis a Eteni zpracovávané informace,
- tvarovalni a přenos vstupnich a výstupnich signálá interface,
- přijimáni a generování řidicich a stavových signálâ,
- fíizeni a vystaveni hlav,
- výbêr hlav (u pamêti C 7115).
3.1.1 Popis mechanické části paměti

Mechanickou đast paměti lze z funkčního hlediska rozdělit do těchto hlavních uzlê:

- základová deska,
- čelni panel.
- náhonový mechanismus disku,
- upinaci mechanismus disku,
- příiklápêci mechanismus hlav,
- vystavovaci mechanismus,
- č/z hlavy.
- nosič informaci (disketa),
- snímače.

3.1.1.1 Základová deska

Je tvořena odlitken z hlinikové slitiny a slouži jako nosny prvek celé pamèti. Jsou na ní uchyceny všechny ostatní celky a uzly paměti. V boănich stênách odlitku jsou uchycovaci závitové otvory M6 (po dvou z každé strany), sloužící kuchycení pamèti do zařízeni. Maximálni délka zašroubování šroubé M6 do bočnic základové desky je 8 - 10 mm . V bočnicich jsou na každé straně tři obdélnikové otvory, které usnadňuji odvod ztrátového tepla proudênim. Na vnitřnich stranách bočnic jsou opracovány drážky pro vedeni disku př̀i jeho vkládáni do pamêti.

3.1.1.2 Čelní panel

Je tvořen výliskem z plastické hmoty probarvené v celém objemu. Uprostřed má dlouhou štěrbinu pro vkládáni diskety do paměti, která je na jedné straně rozšǐ̌ena do obdélnikového prohloubeni umoz̃nujiciho uchopeni diskety při vyjimáni. Disketa se do pamèti vkládá tak, aby označeni diskety bylo v této prohlubni. Při uzavřeni diskety je hrana
jeji obálky mírnĕ pod čelem panelu. Uzavíráni pamèti (a tim i upnuti disku) se provádí páčkou na čelním panelu, která rovněz mechanicky bráni upnuti (a tim možnému poškozeni) zcela nezasunuté diskety a jeji vyjmuti bez otevření pamêti a odklopení hlav (čimž by opět mohlo dojit k jejich poškozeni). Krajni polohy pohybu páčky jsou vymezeny dorazy, přič̌emž v jednom z nich je umístěno signalizační svêtlo zelené barvy oznamujicí stav pamĕti.
3.1.1.3 Náhonový mechanismus disku

Náhonový mechanismus slouži k otáčení paměťovým mediem - diskem v obálce. Sestává z vřetene (sloužiciho rovněž jako protikus při centrováni a upnuti disku), uchyceného na dvou kuličkových ložiscich v základové desce, řemenového převodu pomocí pružného řemene kruhového prâřezu (odpadá nutnost napináni řemene) a speciálního stejnosmèrného bezkontaktniho motorku (s permanentnimi magnety) a přesně elektronicky řizenými otáčkami. Otáčky motorku jsou elektricky nastaveny na desce náhonu a nezávisi, na kolisáni napájeciho napěti (v povolených mezich). Optické snimače podle natočeni rotoru dávaji impuls k přepínánínapètí do jednotlivých cívek statoru. Další optický snímač snímá okamžitou rychlost otáčení rotoru během otáčky, tento signál slouží po elektronickém zpracování na desce řizení k okamžité přislušné korekci rychlosti. Řemenice pro elastický náhonový řemien kruhového prâřezu je vytvořena na rotoru tvořícího plášť otáčejici se současnè s permanentnimi magnety v něm uchycenými kolem uvnitř umistěného statoru s vinutim. Motor společně s optickými snímači a kabelem pro připojeni desky řizeni tvoři nedilný celek.

3.1.1.4 Upinaci mechanismus disku

Slouži k vystredểns a upnuti vloženého disku. Po vloženi disku v obálce (diskety) se pamět uzavře otočenim pấky na čelnim panelu do polohy napřič přes disketu. Pomocí převodu se přiklopi paralelogram přitlaku a přibliži k disku středici kotouč v rovnoběžné poloze k disku. Kotouč nejdříve nabere na svôj přesný kulový prûmêr středicí otvor disku, čimž je disk vystředěn vzhledem ke středicimu kotouči. Při dalšim přiklápění dosedne kulová plocha na hřideli kotouče do kuželového vybráni hřidele vřetene, čimž se disk ustředi vzhledem k základně a tím vzhledem k vystavovacimu mechànismu $s \quad c / z$ hlavami. Úplným dovřenim sevře přítlačný kotouč disk oproti čelu vřetene, čímž se disk uvede do rotace (vkládat disk je možno i při běžicím motoru). Na příklopném rámu je rovněž uchycena část snimače indexu (viz snímače) nesouci infradiody.
3.1.1.5 Přiklápěci mechanismus hlav

Při uzavření paměti se pomocí převodu přibliži přitlačná páka k disku. Přítlačná páka svou vnější stranou zachycuje za zobáček držáku hlavy "1". Hlava "1" se tak přibliží k pevné hlavě " O ". Jakmile pamět dostane z vnější řídící elektroniky povel k přiklopeni hlav (pro čtení nebo zápis), sepne elektromagnet přitlaku a pomocí pákového převodu umožní přitlačeni hlavy "1" na hlavu "O". Tim dojde
k přitlačení disku molitanovým pruhem (nalepeným na spodni straně přitlačné páky) proti opěrné ploše na základové desce. Ǔcelem tohoto mirného sevřeni disku je jeho uklidnění před přitlačenými hlavami pro zajištěni rovnomęrného kontaktu. Priklopenim páky se rovnĕž zcela uvolni zobáček držáku hlavy "1" (mezi dosedaci plochou přitlačné páky a plastikovým klouzátkem zobáčku musí být v celém rozeahu zdvihu hlav zaručená vâle). Tím hlavy dosednou do kontaktu na disk z dbou stran silou danou pruy̌inou nosičó hlav. Príi otevǐení paměti je zajištĕno nucené odklopeni hlavy 1 do otevřené polohy,zajištujici možnost bezpečné. ho vyjmuti disku bez poškozeni hlavy.
U paměti CONSUL 7114 je použita jedna pevná hlava a jeji přítlak k disku se zajištuje pomoci elektromagnetu.
3.1.1.6 Vystavovaci mechanismus

Vystavovací mechanismus slouži k vystaveni nosiče s č/z hlavami na jeden ze 77 záznamových válcâ (2×77 stop). Základem vystavovacího mechanismu je 4-fázový krokový motor s úhlem natočeni $3,6^{\circ} / k r o k$. Stator má navinuty dvě civky s odporem vinutí 39 O. Prepínáním napájecího napěti do jednotlivých cívek dochází k natočení rotoru přislušným směrem. Na hřideli rotoru je mechanická plastová brzda tlumici kmitáni motoru po vystavení na stopu. Dále je na hřideli motoru kladka, na jejiž vnitřni straner je vytvořen mechanický doraz proti přeběhnutí nosiče hlav. Rotační pohyb motoru jé převeden na přímočarý pohyb nosiče hlav pomocí ocelové planžety silné $0,05 \mathrm{~mm}$, která je na jednom konci uchycená pevně na nosič h'lav, druhý konec je na něj uchycen pružně pomocí napínače. Planžeta (tvaru V) je $1 \times$ ovinuta kolem kladky a je k ni svým středem pevně uchycena, aby se zabránilo proklouznuti. Nosič hlav je při svém vratném přímočarém pohybu veden pomóci dvou kluzných ložisek po vodicí tyči a úhlovému natočení brání plastiková vidlice uchycená na nosiči, vedená vodítkem na konzole. Na konzole je přichycena lamela ovládajicí optické snímače polohy nosiče hlav - stopy 00 a stopy 43 (viz snímače).

3.1.1.7 Čteci a záznamové hlavy

Hlavy jsou univerzální feritokeramické, kontaktního typu, s tunelovým omazáním zapsané stopy. Jsou upevněny pružně v nosičich hlav tak, aby mohly svými čtecimi a záznamovými šttěrbinami dobře dosednout na disk. Přítlak hlavy na disk je řádově 0,25 N.
U paměti CONSUL 7114 je použitá jedna pevná hlava.

3.1.1.8 Nosič informaci

Pro paměti C 7114 a C 7115 je možno použít pružné magnetické disky IBM DISKETTE pro jednostranný záznam a IBM DISKETTE 20 pro dvoustranný záznam (jen C 7115) nebo jejich ekvivalenty odpovídajici normám ISO/DIS 5654 a ISO/DIS 7065. Základem disku je mylarová folie, pokrytá po stranách magnetickou vrstvou pro záznam informací. Disk je uložen v obálce s měkkou výstelkou, která je do jisté míry schopna zachycovat nečistoty z povrchu disku. Obálka má prostřiženy podélné otvory proč/z hlavy, středový otvor pro upnuti disku a kruhový indexový otvor, který svou polohou určuje, zda jde o disk pro jednostranný, nebo dvoustranný záznam.

Doporučené typy disket jsou následujici:

Výrobce	Dvoustranná disketa 26 sektorâ s 256 byte (ISO DIS 7065/1) TYP	```Jednostranná diskete 26 sektorá s 256 byte (ISO DIS 5654/1) TYP```
DYSAN	3740/20	3740/10
SCOTCH 3M	743-0 (256)	741-0
BASF	FD 20	FD 10
MAXELL	FD2-256D ($X D-$ ne formá tovanáa)	FD1-2560 (XD)

3.1.1.9 Snímače
a) Snímač indexu

Na páce přitlačného mechanismu je umístěn nosič jedné nebo dvou diod snímače indexu. V protilehlém místě na opačné straně disku je umístěna druhá část snimače indexu nesouci dva nebo jeden fototranzistor.
Při otáčeni disku prochází infračervený paprsek z jedné ze dvou diod přes otvor prostřizzený v obálce disku a přes otvor prostřižený v samostatném disku do přislušného fototranzistoru. Py̌íslušny indexový impuls slouží jednak k určení začátku zapisované či čtené stopy, jednak dává informaci o tom, že je vložen disk a že se otáči a jednak (podle polohy vystřiženého otvoru v obálce disku) identifikuje druh vloženého disku (pro jednostranný nebo dvoustranný záznam - u pamêti C 7115);
b) Snimač stopy 00 a snimač stopy 43

Jsou to kompaktní optické snimače, kde v jednom celku je uložena infradioda a proti ni fototranzistor. V mezeře těchto snimača (mezi elektrooptickými prvky) prochází lamela uchycená na nosiči hlav, která přerušuje infračervený paprsek z infradiody do fototranzistoru. Snimač stopy 00 dává signál, že nosič hlav je ve své výchozi poloze. Signál snímače stopy 43 je použit pro přepnutí velikosti zápisového proudu proč/z hlavy. Snimače jsou uchyceny na základně;
c) Snímač blokování zápisu

Je fyzicky identický se snimači uvedenými v b) a je rovněž uchycen na základové desce v místě, kam dosahuje spodní strana obálky disku. Pokud je v tomto místě obálky disku prostřiž̌en otvor tak, aby při zasunuti obálky s diskem mohl procházet infračervený paprsek, vytvoři se signál, který zablokuje zápisové obvody, čimž se zabrání možnosti zápisu na disk takto upravené diskety;
d) Mikrospínač uzavření paměti

Je umístên na konzole tyče zavirací páky a je ovládán pákou přit lačného mechanismu. Signál od uzavření paměti je použit jako podmínka pro dalši funǩ̌ni povely pro pamět.

3.1.2 Popis elektronické Části paměti

Elektronické obvody pamèti jsou rozloženy na jedné výklopné dvouvrstvé desce plošných spojô o rozmèrech $280 \times 203 \mathrm{~mm}$ a na jedné dvouvrstvé desce o rozmĕrech $200 \times 50 \mathrm{~mm}$, na které je rozložena fídici elektronika hnaciho motoru.
Všechny obvody jsou napájeny vnějšimi ss napětimi $+5 V / 1,2 A ;+24 V / 0,2 A$; max. zVlněni 100 mVšš a +24V/1,4A; max. zVlněni 240 mVšš.
Z funkčniho hlediska mážeme elektroniku paměti rozdélit na následujici obvody:

- zápisové a čtecí obvody č/z kanálu,
- obvody omazáváni šiřky stopy,
- obvody výběru hlav,
- rídici obvody krokového motoru pro vystaveni hlav,
- snimací, tvarovaci a přenosové obvody vstupních a výstuṕních signálů interface,
- řídici obvody otáček hnacího motoru pružného disku.

Podmínkou pro správnou činnost jednotlivých funkci paměti je výběr jednotky, připojení napájecích napěti, otáčeni disku a vysílání indexových impulsů do fídicí jednotky.
Propojení paměti CONSUL 7115 s řidici jednotkou je znázorněno na obr. 4.
Propojeni pamětís ŘJ

Obr. 4: Mezistyk (interface) C 7115-ŘJ

3.1.2.1 Zápisové a cteci obvody č/z kanálu

Zápisové a čteci obvody č/z kanáluy jsou znázornĕny na principiálnim schématu zapojení .650.500, L2 - Deska FD, obvodové schéma, typ II (přil. 1).

Správná Činnost zápisových obvodo je podminěna vybránim paměti a správné strany rotujiciho disku, vložením a upnutim diskety bez otvoru pro blokování zápisu, připojenim a vybránim hlavy, vydánim povelu zápis a přichodem zapisovaných dat z ŘJ.

Přes inventor D5/10 postupuji data zápisu na hodinový vstup 11 klopného obvodu typu D (D7/8-9), který přes inventory a převodníky hladin D8/12, D8/10 řidí tranzistorové přepínače zápisového proudu T1, T2. Zápisový proud pak přetéká ze zdroje +24 V přes tranzistory výběru hlav T4 (HO) resp. T6 (H1), č/z vinuti HO, resp. H1, oddělovací diody D1, D3, resp. D2, D4, sepnutý spinač T1 (T2) a obvod pro fíizeni velikosti zápisového proudu T3 (R9). Signál Zápis a data zápisu rovněž přicházeji na MKO D4, kterỳ spolu s KO $07 / 6$ hlídá přichod zapisovaných dat krátce po vydání povelu Zápis. Výstupním sighálem tohoto obvodu je řizená kombinační logika zápisových obvodů pro výbě̀r hlav, režimu zápis a čtení a sekvenčni a kombinační logika řidicí prûtok mazacího proudu omazávacím vinutim č/z hlavy. Mazací proud hlavy HO teče přes tranzistor T9 a mazaci proud hlavy H1 protéká tranzistorem T8. Sekvenční obvody pro rízeni omazáváni zapsané informace jsou tvořeny MKO D2/4 a D2/12, které zajišťuji potřebné zpoždĕni omazákání vôči zápisu.
Čteci obvody jsou při zápisu odděleny diodami D7 až D10.
Při čteni je přislušná hlava vybrána sepnutim tranzistoru T5 (HO), resp. T7 (H1). Čtený signál postupuje na vstup 1-2 integrovaného obvodu čtecího zesilovače IO 1 (3470) přes diody D7-D10. Správná korekce čteného signálu je nastavena pomocí kondenzátorâ C17, C18, C19, C20, indukčností L1, L5, L4 a L2 a odporu R39. Regulace fáze výstupního signálu na úrovni TTL se provádí potenciometrem P1. Čtená data postupuji z výstupu IO $1 / 10$ a budič $F 5 / 8$ na interfaceovou linku K1/46.

Napájeni integrovaného obvodu IO1 je zajištĕno ze zdroje +5 V a zenerovou diodou D17 přes srážeci odpor R27. Pracovni režim vstupniho obvodu je nastaven diodami D14-016 a odpory R29,R91 a R133, R92.

Přitlak hlav je při zápisu a čteni zajištěn interfaceovým signálem PŘítLAK HLAV, přivádĕnỳm na špičku K1/18. Py̌es invertor̆ $\mathrm{E} / / 10$, hradla $\mathrm{C} 4 / 6, \mathrm{C} / 3 / 3, \mathrm{C} / 8$ a $\mathrm{C} 4 / 11$ postupuje na KO typu D C3 a pak přes hradlo F1/3 a B5/3 řidí spinací tranzistor elektromagnetu priklopu hlav T1O.

Z výstupu hradla C4/8 postupuje signál přítlaku hlav na blokovací obvody zápisu a na Ko typú D C3/8-9, který přes hradlo C5/8 řidi signalizační LED na předním panelu pamêti. Tato dioda p̛̣i zápisu nebo čtení bliká v rytmu přichodu indexových impulzô, při ${ }^{\prime}$ áděných na hodinový vstup $\mathrm{KO} \mathrm{C} 3 / 8-9$ ($\mathrm{při}$ sepnuti spojky S_{23}). Při propojeni spojky \dot{S}_{24} bude dioda trvale svitit při přivedení interfaceového signálu PAMË̈ V POUŽ̃ITI na špičku K1/16.

3.1.2.2 Obvody vystavovaci logiky

Obvody vystavovací logiky slouži k nastavení hlav na požadovanou stopu (stopy). Jsou tvořeny čitačem krokô, dekodérem stavu čitače, výkonovými spinači, obvodem pro řízení proudu tekoucího vinutim motoru a monostabilnim klopným obvodem. Obvody jsou fizeny signálem KROK, při kterém se změni stav čitače o jedničku. Podmínkou správné činnosti obvodô je vybrání pamêti a zablokování obvodô povelu Zápis.

Směr čitání čitače je dán interfaceovỳm signálem SMĚR. Při nizké úrovni tohoto signálu se hlavy pohybuji smèrem do středu disku, při vysoké úrovni se pohybuji smêrem vzad, t.j. od středu disku. Citač je tvořen IO B5 a B7. Výstupy 5-6 a 8-9 integrovaného obvodu B7 jsou při přichodu impulsâ KROK řizeny tak, aby sled spináni jednotlivých budicich tranzistorâ vinuti krokového motoru Z22KD207 (vinuti A, B) odpovidal tab. 2.

Smexr	ystav	ování	Úroveñ vývodů IO B7				Zapnutí/vypnuti tranzistorů							
VZAD		VPRKED	9	8	5	6	T12	T14	T16	T18	T20	T22	T24	T26
			0	1	0	1	z	v	V	z	z	v	V	z
1.	KROK	3.1	1	0	0	1	V	z	z	V	z	V	V	z
2.	KROK	2.	1	0	1	0	V	z	z	V	V	z	z	V
3.	KROK	1.	0	1	1	0	z	V	V	z	V	z	z	V
4.	KROK	(VP)	0	1	0	1	z	V	V	z	z	V	V	Z

Přitom se přivede přes proudový zdroj T27, T28 do příslušného vinuti krokového motoru napájecí napětí +24 V v odpovidajicim směru. Plné buzení vinuti však trvá jen krátkou dobu (asi 30 ms) po příchodu signálu KROK. Po uplynutí této doby protéká vinutím krokového motoru jen přidržný proud ze zdroje +5 V přes diodu D25.
3.1.2.3 Obvody generování stavových signálů

Obvody generớ ání stavových signálů jsou určeny k vytvoření signálu INDEX 1 , INDEX 2 , STOPA OO, STOPA 43, blokování zápisu, kontrola výměny disku, dvoustranný disk a JEDNOTKA PŘIPRRAVENA.

Ke generaci signálu INDEX 1, 2 se používá optoelektronických prvků (světelných diod infračerveně vyzařujících WK 16421 a fototranzistorů NPN KPX 81), které sleduji otvor \checkmark rotujicim disku. Snímaným signálem je řízen vstup 7 (INDEX 1) nebo vstup 5 (INDEX 2) napěťového komparátoru G2. Na výstupu součinového členu F1/11 dostáváme signál INDEX, který řidi potřebné obvody paměti a po vybrání paměti postupuje přes budič F4/11 na interfaceovy konektor K1/20.

Signály STOPA 00 a STOPA 43 jsou rovněž generovány pomoci výše uvedených optoelektronických členû. Z těchto členů postupují signály na vstup 11 (STOPA OO) a vstup 9 (STOPA 43) komparátoru G2, na výstupu kterého dostáváme informaci o poloze hlav na disku. Signál STOPA 00 pak postupuje pro vybranou pamět pres budič F5/11 na interfaceový konektor K1/42. Signálem STOPA 43 se řídí velikost zápisového proudu, tekoucího při zápisu tranzistorem T3 a odporem R9.

Signál OCHRANA ZÁPISU je generován pomocí optoelektronického členu řídicího komparátor G4/2. Z výstupu komparátoru postupuje signál na blokovací obvody zápisu a přes hradlo a budič na interfaceový konektor K1/44.
Signál DVOUSTRANNÝ DISK je generován KO F2/5-6, který je y̌izen signálem INDEX 2. Tento signál je pro vybranou pamět přiváděn přes budič F5/3 na konektor informace K1/10.

Signál ZÁMĚNA DISKU je generován KO F2/8-9. Tento obvod je řízen mikrospinačem uzavření diveří paměti a přitlaku hlav (při sepnutí S1), nebo výběrem paměti (sepnutí S2). Přes budič F5/6 postupuje pro vybranou pamět na konektor interface K1/12.
Signál JEDNOTKA PRIPRAVENA (READY) je generován pomocí MKO E2 a KO F3, které jsou řizeny mikrospinačem uzavření dveří paměti a signálem INDEX. Správná délka signálu MKO se nastavi potenciometrem P2. Signál JEDNOTKA PŘIPRAVENA pro vybranou pamět postupuje pres budič F4/6 na konektor interface K1/22.
3.1.2.4 Řídici obvody otáček hnaciho motoru pružného disku

Rotačni pohyb pružného disku je zajištěn řemenovým převodem od tř̌ifázového stejnosměrného bezkolektorového elektromotoru. Přepináni fázi a snimáni rychlosti otáčení motoru je provedeno pomoci optoelektronických členê.
Principiálni schéma zapojeni buzeni motoru a řizeni jehio otáček je na výkresu 605.510, L2 - Deska náhonu, obvodové schéma, typ II (přiloha 3).

Přepinání fázi motoru je řizeno optoelektronicky̌mi prvky, rozloženými na desce snímađó 605.080 , která je připojena k základnê motoru. K fototranzistorûm řizeni spinačô fází jsou připojeny vstupy 5,7 a 9 komparátoru 108 , Z výstupô 2,1 a 14 IO8 jsou signály přivádẽ̛y na na vstupy převodníkâ z kódu $B C D$ na desítkový kód (IO 5). K výstupům tohoto obvodu je při ipojena kombinažni logika a prevodniky úrovni, kterými se f̌idi spinání a přepináni jednotlivých fázi hnaciho motoru. Ke spinacơóm fázi patơi tranzistory Q40 az Q51.
Pro měření rychlosti otáčení rotoru se rovněž používá optoelektronický člen, tvořený svêtlo vyzařujici diodou a fototranzistorem. Ziskaným signálem je řizen komparátor IO $8 / 13$, na výstupu kterého obdržíme signály, pomocí kterých se gereruji velmi krátké impulzy. Têmíto impulzy je đ̌izen MKO, realizovany časovačem BE 555 (IO 6), Jeho výstupnimi signály jé y̌izeno nabijeni a vybijení kondenzátoru C51 přes tranzistory Q37, Q38 a Q39. Opakovací perioda řídicích signálâ na vstupu MKO je závislá na rychlosti otáčení rotoru. Tim se mění i úroveñ napětí na vstupu napêtovê závislého generátoru impulzó, realizovaného integrovaným obvodem 7 ($B 2600$). Na jeho výstupu dostáváme sérii šíṛ̛ovê modulovaných impulzá, která je přes tranzistor Q52 přiváděna na kombinační logiku y̌izeni spináni fázi. Tím docházi k impulznimu y̌izeni proudu, tekoucího vinutim motoru.

Rozloženi součástek na desce elektroniky je patrno z výkresu desky FD osazené 605.500, L1 (přiloha 2). Rozloženi součástek f̌idicí elektroniky hnaciho motoru je na desce náhonu osazené 605.510, Li (přiloha 4) a rozloženi snímačáa je na desce snimačáa osazené 605.080 (příloha 6). Obvodové schéma desky snímačô je na vy̌krese 605.080, L2 (přiloha 5).
4. NÁVOD K OBSLUZE

4.1 Všeobecné pokyny

4.1.1 Zacházeni s disketou

Nosičem informace pro pamět CONSUL 7115 a 7114 je pružný magnetický disk, odpovidajicí normě ISO 5654 nebo ISO 7065. Vnějši provedeni dişety je na obr. 5. Vlastní magneticky disk je umístěn v obálce, která má z vnitǐni strany výstelku, sloužici k zachycení prachu. Při skladování je disketa uložena v obalu. S disketou je nutno zacházet následujicím zpissobem.

1. Okamžitě po vyjmutí diskety z paměti je nutno ji uložit do obalu!
2. Diskety je nutno skladovat ve vertikálni poloze.
3. Diskety je zakázáno vystavovat působení magnetického pole a umísťovat je v blizkosti předmětơ z feromagnetických materiálá, které mohou být zmagnetovány.
4. Poškozené obaly pro skladování diskety je nutno vyměnit za nové.
5. Na obálku disku (disketu) je zakázáno psát tužkou nebo kuličkovým perem. Pro tento účel použivejte např. speciálni popisovač "FIX".
6. Při jakékoliv manipulaci s disketouje zakázáno kouřit.
7. Diskety je zakázáno vystavovat pâsobeni tepla a slunečniho zářeni.
8. Je zakázáno dotýkat se povrchu vlastního disku a čistit jej!

4.1.2 PY̌íprava paměti k montáži

1. Otevřit lepenkovou krabici, vyjmout těsnící vložky, sejmout polyethylenový sáček a pamět vyjmout.
2. Zkontrolovat čistotu paměti, obzvláště prostor pro umístění diskety přítlačného mechanismu, držáků hlav a vodicího pásku. Případný prach a nečistoty je nutno odstranit.
3. Zkontrolovat zasunuti konektorů kabelå magnetických č/z hlav.
4. Zařizení je nutno vybalovat v bezprašné místnosti s maximální vlhkosti 65%.

4.1.3 Montáž paměti

Pamět je určena pro vestavěni do odpovidajícího zařizení. Celkové a připojovaci rozměry paměti jsou vyznačeny na obr. 6.
Určeni špiček konektoru interface je uvedeno v technickém popisu, kde je zároveñ uveden i způsob napájení. Do zařizeni se pamět uchycuje šrouby M6. Délka zašroubování do rámu paměti nesmí přesáhnout 10 mm .

4.2 Bezpečnost práce

4.2.1 Připojení paměti a jeji uvedení do provozu je nutno provádět v souladu s odpovidajicími státnimi normami a předpisy pro zařizeni výpočetní techniky, platícími v zemi zákaznika.
4.2.2 Při běhu motoru je zakázáno strkat prsty do prostoru řemenic, hnaciho ł̌emene, vystavovacího mechanismu a pohonného elektromotoru.
4.2.3 Technickou obsluhu paměti mohou vykonávat pouze osoby, zaučené v rozsahu exploatační dokumentace a seznámené s předpisy bezpečnosti práce s elektrickým zařizením vouladu s odpovídajícími normami a předpisy, platnými v zemi zákazníka.
4.2.4 Je zakázáno dotýkat se pracovniho povrchu magnetických hlav prsty a kovovými předměty, protože je zde možnost mechanického poškozeni hlavy a tim vyřazeni paměti z provozu.

Obr. 5: Flexibilni magnetický disk (disketa)

5. NÁVOD PRO MONTAZZ゙ A INSTALACI

5.1 Připrava a provoz pamĕti

5.1.1 Přemistĕnim ovladače na čelnim panelu proti smĕru pohybu hodinových ručiček se uvolní otvor pro zasunutí diskety. Disketa se pł̌i vkládáni orientuje tak, aby část obálky s podélným otvorem pro magnetické hlavy vcházela do otvoru napřed a štitek obálky aby se nacházel ve vy̌rezu čelního panelu.
5.1.2 Do vybranóho otvoru se vloži disketa a zasune se až na doraz. Pak se přemísti ovladač do krajni polohy ve smèru pohybu hodinových ručiček, čimž se magnetický disk vyst ředí a upne.
5.1.3 Při vyjímáni diskety z pamêti je nutno přemistit ovládač do krajní polohy proti smĕru pohybu hodinových ručiček, disketu uchopit prsty ve vy̌rezu čelního panelu a vytáhnout ven.
5.1.4 Při dodržováni výše uvedených pravidel doporučujeme disketu vkládat a vyjimat z paměti při zapnutém náhonu paměti.
5.1.5 Cinnost vybrané jednotky je signalizována rozsvicením zelené LED diody na předním panelu pamèti.

5.2 Seřizeni panêti

5.2.1 Seřizeni prítlaku disku

- Uvolníme přitlak disku otočením ovladače vlevo k dorazu na panelu,
- uvolnime matici (ovladače),
- natáčime tyč sest. tak, aby hlavy šroubâ třmenu byly pod úrovni obrysu pamêti 0 - 0,5
- mezi ovladać a panel vložime pomâcku tloušťky $0,5 \mathrm{~mm}$ (pomôcka nesmí poškozovat materiál panelu ani ovladače),
- přitlačíme ovladač k levému dorazu a v této poloze utáhneme matici,
- pomâcku vyjmeme,
- zavřeme pamět, ovladač otočíme až k pravému dorazu, V této poloze musi ovladač držet s přetahem pružin,
- uvolníme dve šrouby M2,5 třinenu. Oba závěsy ramena se vlastni pružnosti srovnají,
- utáhneme oba šrouby,
- po otev̌̌eni ovladače kontrolujeme paralelni chod čela střediciho kotouče. V otevřené poloze musí vzniknout štěrbina mezi str̛edicím kotoučem a vřetenem cca 2,5 - 3 .

Mechanismus nesmí přesahovat obrys pamèti. Py̌i zaviráni jednotky musi být přitlačný kotoữ ve vzdálenosti cca 0,5 od vřetene s čelem vřetene rovnoběž̌ny $\pm 0,2$. Lze se-「̌idit posunem šroubô M 2,5 třmenu v drážkách závěsâ ramena.

Poznámka:

Za levý doraz je uvádĕn výstupek s diodou LED. Po nastavení zkontrolovat, zda hřidel střediciho kotouče při otáčeni nedrhne v otvoru 66 třmenu. V připadé drhnuti je nutno povolit 2 šrouby M3 (p̌̌istupné ze strany desky elektroniky přes otvory v základnĕ) spojujici rameno, lištu ramena, závăs ramena. Posunem uvolněného ramena se drhnuti odstrani, oba z̊rouby sé přitáhnou a znovu se zkontroluje paralelni chod čela střediciho kotouče, nepřesnosti se upraví.

Obr. 6: Celkové a pǐipojovaci rozmĕry pamĕti

5.2.2 Seřizeni koncových dorazů nosiče

- Uvolnime šroub M3 brzdy, ručně přesuneme nosič hlav k dolnímu koncovému bodu tak, aby se přiložka 1 ještě nedoty̌kala planžety.
- Natočime brzdu až na doraz v kladce a brzdu šroubem M3 zajistíme.
- Přesuneme nosič hlav k hornímu koncovému bodu až na doraz a kontrolujeme, zda se ani \checkmark této úvrati nedotýká planžeta přiložky 1.

Poznámka:
Våle mezi planžetou a přiložkou 1 má být v obou koncových bodech nosiče hlav přibližně stejná.

5.2.3 Seřizeni prítlaku hlav

- Uvolníme přitlak disku otočením ovladače vlevo k dorazu na panelu.
- Po uvolnění matice vyšroubujeme ze $3 / 4$ šroub M3 na ramenu.
- Uvolníme 2 šrouby držáku elektromagnetu a posouváním elektromagnetu nastavíme vzdálenost kluzné plochy přítlačné páky od roviny dosedacích ploch základny na $18 \pm 0,5 \mathrm{~mm}$.
- Elektromagnet s držákem zajistime v této poloze přitažením šroubů.
- Kontrolujeme, zda se v krajnípoloze (stopa 76) nedotýká držák o rotujici řemenice.
- Do paměti zasuneme magnetický disk a paměť "zavřeme".
- Pomoci šroubu M3 ramene nastavíme polohu přitlačné páky tak, aby se magnetická hlava 1 v držáku nedotýkala magnetického disku. Průsvit cca do 0,3 kontrolujeme vizuálně.
- Šroub M3 zajistíme prítužnou maticí.
- Zatlačením na jho elektromagnetu v jeho zadní části až na doraz imitujeme přitlak. Posuvem táhla po uvolněni šroubu a objímky na jhu elektromagnetu nastavíme polohu přítlačné páky tak, aby uvolnila držák 1. Magnetická hlava 1 dosedne na magnetický disk.
- Mezi klouzátkem držáku 1 a kluznou plochou přitlačné páky nastavíme vůli 0,5 + 0,5 mm.
- Objimku jha elektromagnetu zajistíme šroubem.
- Vûli $0,5+0,5$ kontrolujeme po celé dráze vystavovacího mechanismu.

5.2.4 Seřizení mikrospínače zavření paměti

Okamžik sepnuti mikrospinače umístěného na držáku se seřídí přihnutím vyčnivajíciho plochého prstu ramena tak, aby k sepnuiti došlo při natočení ovladače o úhel $45^{\circ}+10^{\circ}$. Úhel svírá ovladač s podélnou osou panelu.
5.3 Nastaveni paměti

Nastaveni elektroniky paměti provádime po namontování na rádně prověřenou základovou desku všech zkontrolovaných a nastavených funkčních celků paměti a po jejím mechanickém serizizeni.

Před nastavováním musí být pamět minimálně 20 minut v provozu. Pro přesné nastavení na referenční stopu je žádouci, aby nastavovaci CE-disketa byla uložena alespoñ 24 hodin v optimálních klimatických podmínkách. Nastavovaci klimatické podmínky jsou: - teplota okolniho prostředi $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$.

- relativni vlhkost $\quad 40-60 \%$.

Před založenim nastavovaci diskety je potřebné pamět rádně odmagnetovat a po dobu založeni diskety nezapinat a nevypinat pamět a nepřipojovat nebo odpojovat žádné propojovaci kabely.

Nastaveni pamèti provedeme následujicim zpâsobem.

5.3.1 Nastaveni otáček disku

a) Do paměti vložime pracovni disketu a upinacim mechanismem upneme disk,
b) vymontujeme desku náhonu a na místo odporu R161 připojime odporovou dekádu (8-12) kO,
c) pamět připojíme k testeru typu TFD-20 a zapneme napájeci napĕti,
d) vystavime hlavy na stopu 00 ,
e) zvolíme pracovní režim "NEKONTROLOVANÉ ČTENf".
f) signál "INDEX" na špičce K1/20 přivedeme do čitače, pracujiciho v režimu měrení opakovaci periody v rozsahu 150-180 ms,
g) pomoci odporové dekády nastavime délku opakovaci periody signálu INDEX na hodnotu $T=166,7 \mathrm{~ms} \pm 0,5 \mathrm{~ms}$.
h) odporovou dekádu odpojime a na jeji misto zapojime odpor z řady E96,
i) desku náhonu při ipevnime k základne̊ paměti.

5.3.2 Nastaveni čteciho zesilovače

a) Paralelnê k hlavám připojime kompenzační potenciometry 10 ko,
b) vybereme hlavu 0 a zvolime pracovní režim testeru "NEKONTROLOVANÝ ZÁPIS",
c) na stopu 00 zapišeme "nuly" a "jedničky".
d) zvolime pracovní režim "NEKONTROLOVANÉ ČTENf".
e) sondy osciloskopu připojíme k měřicím bodôm M13 nebo M14 a sledujeme prûběh napěti na stinitku obrazovky,
f) zavřeme desku elektroniky a připojeným potenciometrem nastavíme správný prôběh napêti. v meřicich bodech M13 a M14. Tento prâběh je znázorněn na obr. 7.

Obr. 7
9) změ̌íme hodnotu odporu potenciometru a na jeho misto připojime odpor TR191 z řady E48 (2,7 až 4 kO),
h) vybereme hlavu 1 a provedeme pro ni operace c) až g) - neprovádime u paméti $\mathbf{C 7 1 1 4}$
i) vystavime na stopu 76 a zapišeme zde samé "nuly".
j) zvolime pracovni režim "NEKONTROLOVANÉ ČTENf"a sondu osciloskopu připojime k M15,
k) potenciometrem P1 nastavime fázový posun čtených impulzá tak, aby ležel v mezich $0,95<\frac{T 1}{12}<1,05 \quad$ (obr. 8).

Obr. 8

1) na testeru zvolime pracovní režim "INICIALIZACE" a provedeme zápis "jedniček" a "nul",
m) zvolime pracovní režim "ČTENf" a v náhodném výběru čteme zaznamenané informace. Během operace čtení nesmí být chybné čteni. Čteni provádime jak na hlavě 0 , tak i na hlave 1.
5.3.3 Radiální nastaveníhlav na referenční stopu (u C 7114 nastavíme jen hlavu 0)

Po vložení nastavovací diskety DYSAN 360/2A do rotujici paměti provedeme:
a) Hlavy vystavíme na stopu 38 , vybereme hlavu 0 a zvolime pracovní režim "NEKONTROLOVANE ČTENI",
b) signál INDEX přivedeme na vstup externi synchronizace časové základny osciloskopu,
c) rozsah časové základny nastavime na $20 \mathrm{~ms} / \mathrm{dilek}$,
d) sondy osciloskopu připojime k M13 a M14. Kanál přepneme na INVERT a pracouni režim osciloskopu vybereme na součet (ADD). Citlivost obou kanálâ volíme stejnou,
e) na obrazovce sledujeme prâběh signálô podle obr. 9. Zobrazené prûběhy se mohou od sebe lišit maximálně o 30% amplitudy signálu. Je-li tomu tak, přejdeme k bodu i). Jestliže nastavení nevyhovuje, pokračujeme v operacích podle bodù f) až h)
f) povolíme upevňovaci šrouby krokového motoru,
g) posunutím krokového motoru vpřed nebo vzad nastavime hlavy tak, aby amplituda obou obálek signálu byla stejná,
h) utáhneme upevñovaci šrouby KM,
i) postupně vystavíme v obou smĕrech na jinou stopu a vrátíme se zpět na stopu 38 . Sledujeme přitom nastavení hlav na referenčni stopu,
j) není-li nastaveni hlav v dovolených tolerancích, opakujeme operace bodó f) až i),
k) provedeme kontrolu nastaveni hlavy 1. Neníli nastavení správné a vzájemnou korekci je možné nastavit obě hlavy, provedeme to operacemi f) aži).
Neníli možné obè hlavy správně nastavit, musí se vystavovaci mechanismus vyměnit. Jsou-li obě hlavy správně nastaveny, přikročime k nastaveni snimače stopy 00 .

Správné nastavení na stopu 38

Posun smèrem ke stopẻ 37 Obr. 9

Posun směrem ke stopẻ 39

5.3.4 Nastavení snimače stopy 00

a) Sondu osciloskopu přepneme na měřeni ss signálu a připojime ji k M7. Musíme zde naměrit úroveñ L,
b) uvolnime s̀rouby lamely 650.006 ,
c) vystavujeme postupnè na stopu 00 ,
d) posouvánim lamely nastavime snimač tak, aby jeho sepnuti odpovidalo obr. 10

Obr. 10
e) , upevñovací šrouby lamely přitáhneme a ověríme opět správnost nastavení snímače,
f) sondy osciloskopu připojime k M13 a M14 tak, jako vooder 3/d a čteme signál, který je na stopè 00 zaznamenán zpâsobem $F M$.
5.3.5 Nastaveni snimače INDEXU
a) Zkontrolujeme, zda šířka indexových impulzů odpovidá TP,
b) vystavime hlavy na stopu 01 a vybereme hlavu 0 ,
c) Osciloskop synchronizujeme od signálu INDEX,
d) sondy osciloskopu připojime k M13 a M14 tak, jak je uvedeno v bodě $3 / d$,
e) časovou základnu osciloskopu nastavime na 50 us/dilek,
f) změřime časový úsek mezi nástupnou hranou signálu INDEX a první špičkou časového signálu. Velikost časového úseku musí být 200 ± 100 us (obr. 11),
g) \vee připadě potřeby nastavime správnou polohu natáčením snimačá indexu T-605.175,
h) hlavy vystavíme na stopu 73 nebo 76 a provedeme zde stejné měření. Naměřená hodnota musi odpovidat 200 ± 100 us,
i) rozdil naměřených hodnot mezi stopami 01 a 76 (73) mêže být maximálně 50 ,us,
j) vybereme hlavu 1 a provedeme pro ni stejná měřeni: Je-li t.řeba, provedeme nastavení obou hlav kompromisně.

Obr. 11
5.3.6 Kontrola nastaveni azimutu (u C 7114 nastavime jen hlavu 0)
a) Vystavime hlavy na stopu 76,
b) Časovou základnu osciloskopu synchronizujeme od signálu INDEX,
c) rozsah časové základny nastavíme na $1 \mathrm{~ms} / \mathrm{dilak}$,
d) sondy osciloskopu připojime k bodôm M13 a M14 tak, jako vodě 3/d,
e) testerem zvolime režim "NEKTROLOVANE ČTENf" a sledujeme prôběh signálu na obrazovce. Čteni signálu provádime postupně pro obě hlavy.
Optimálni nastaveni azimutu (uhlové nastaveni štèrbiny hlav) je při rovnosti
úrovni dvojice 1.-4. a (2,-3.) "shluku" signála. Prôbǎhy správného nastavení
azimutu a jeho dovolených toleranci jsou znázorněny na obr. 12 (dovoleno $\pm 0^{\circ} 18^{\prime}$). \checkmark připadê, že azimut neodpovidá správnému nastaveni, musi se vystavovaci mechanismus vyměnit.

Maximálně dovolená negativní chyba

Maximálně dovolená pozitivni chyba

Obr. 12

5.4 Závêr

Po nastaveni paměti se z ni vytáhne nastavovaci disketa, vloži se disketa pracovní a provede se jeji inicializace. Potom se zvoli pracovni režim ČTENI a v náhodném výbĕru se čte zaznamenaná informace. Nesmí být chybné čtení.
Do paměti se pak vloží jiná pracọvní disketa, která je nainicializovaná a zapsaná na jiné nastavené paměti a provede se její čtení. Nesmí dojít k chybnému čtení.

Potom pamêt f̌ádně uzavřeme a utáhneme šrouby upevñujici desku FD k základnê. Pamĕt připojime k testeru typu PT-350 a provedeme na ni měřeni všech základnich paramet rô podle TP. Py̌i měrení parametrû paměti použijeme také předkompenzaci zapsaných informaci a to až do 180 ns .
\checkmark připadě potřeby je ještě možné čtecí obvody dokorigovat přidavnou kapacitou a doladit potenciometrem P1 tak, aby bylo zajištěno spolehlivé čtení informace zaznamenané metodou MFM.

Nakonec pamét otestujeme testerem typu T-400.
6. PŘEDPIS PRO ÚDRŽBU
6.1 Čĭ̛tơni č/z hlav

Čištêni č/z hlav se provádi dle potřeby (při nespolehlivém čteni), přičemž se očistí pracovni povrch obvodu magnetických hlav. Čište̛ni provádíme tak, že tkaninou nepouštějicí vlákna, namočenou v izopropylalkoholu, očistime pracovnt povrch obou hlaviček (u C 7115). U C 7114 očistime pracovni povrch jedné hlavičky. P̌̌itom rovněž očistime celou pamét od prachu pomoci čisticiho ṣ̆tětce.
Cištêni č/z hlav mažeme také pravidelně provádêt pomoci čistici diskety bASF CLEANING FLEXY DISK $\mathbf{8}^{\prime \prime}$. Zplsob čištěni hlav touto disketou je uveden v návodu na použiti uvedené diskety.
6.2 Pravidla pro skladováni a dopravu
a) Pamĕti se skladuji \vee pôvodnich obalech v mistnostech s teplotou +5 az $+35^{\circ} \mathrm{C}$ a relativni vihkosti do 85%.
Skladovaci mistnosti musí být prosty jakýchkoliv látek, zpôsobujicich korozi. Po dobu skladováni je třeba pamêt ochránit před mechanickỳm poškozenim, vnikáním vlhkosti, prachu a nečistot. Při zuýšené vlhkosti nesmi dojit k oroseni paměti.
b) Paměti se mohou přepravovat \vee pavodnim obalu libovolnỳmi druhy dopravnich prostředká při dodrženi následujicich podmínek:

- zrychlení maximálne 15 g
- frekvence úderá do 60 úderá/min
- teplota okolního vzduchu od $-50^{\circ} \mathrm{C}$ do $+50^{\circ} \mathrm{C}$
- relativni vlhkost vzduchu do 80% bez kondenzace.

Přaprava musi být zabezpežena tak, aby nedošlo k mechanickému poškozeni paměti, proniknuti prachu a nečistot.
6.3 Servis

Údržbbu, záručni i mímozáručni opravy provádí organizace, pověřená těmito úkony pro finálni zařizení, ve kterém je pamẽt instalována a dle doporučení výrobce finálních zařizeni. Kromé toho opravy pamètí provádi OTS výrobce.

7. DOPORUČENÉ PŘfSTROJE A ZAŘfzENf

1. Dvoukanálovy osciloskop, např. typu TEKTRONIX
2. Čislicovy voltmetr (Tesla. BM 533)
3. Mê řič kmitočtu (Tesla BM 520)
4. Miliampermetr (do 100 mA)
5. Odporová dekáda (XL6)
6. Napájeci zdroje ss napěti: +24V/2,5A; +5V/2A
7. Tester typu TFD-20
8. Tester typu PT-350
9. Tester typu T-400
10. Připravek pro oživení elektronických prvkô základny paměti
11. Připravek pro oživeni desky snimačó hnacího motoru
12. PY̌ipravek pro oživeni desky náhonu
13. Přípravek pro oživeni desky elektroniky FD
14. Adapter hlav
15. Dva potenciometry 10 kQ a 15 kQ
16. Univerzálni generátor signálû
17. Nastavovaci CE-disketa DYSAN 360/2A
18. Mechanické nár̛adi
19. Digitálni disketa DYSAN 808 - 400 Diagnostic
20. Čistici disketa BASF $8^{\prime \prime}$

8. PRílohy

1. Deska FD obvodové schóma typ II
2. Deske FD o osezené
3. Dẹaka náhonu - obvodové schéma typ II
4. Deska náhonu - osazená
5. Deska snimača - obvodove schéma typ II
6. Deska snimačá - osazená
7. Náhon - sestava

Deska FD - použité elektronické součástky
Deska náhonu - použité elektronické součástky

Upozornĕní:
 Motiv jednotlivých Cásti se překrývá.

5. $605.080, \mathrm{~L} 2$

6. $605.080, L 1$

7. 605.509

DESKA FD - POUŽIITE ELEKTRONICKE SOUCASTKTY

1	2	3	4	5
926323	TR191	51 RJ	R100	1
926526	TR191	68RJ	R47,R111,R115,R116,R120,R121	6
926326	TR191	$82 R J$	R55,R59,R65,R71,R98,R104	12
			R109, R124, R126,R129,R131,R42*	
926330	TR191	150RJ	R32, R82, R83, R84, R85 , R86,	
			R87, R88, R89, R133	10
926333	TR191	220RJ	R58	1
926151	TR191	332RG	R54	1
926338	TR191	390RJ	R68	1
926341	TR191	510RJ	R6\%,R93	2
926162	TR191	562RG	R24, R26	2
926346	TR191	1 KOJ	R12,R21,R30,R43,R44,R46,R51,	
			R61,R66,R112,R113,R114,R117,R132	14
926178	TR191	1K21G	R1,R2	2
926431	TR191	1 K 50 F	R39,R118,R119	3
926355	TR191	2K2J	R50,R64,R72,R74,R78,R101,	
			R106,R123,R128	9
928751	TR191	2K21F	R5,R6,R15,R18	4
926356	TR191	2K7J	R10	1
929220	TR191	2K74G	R34	1
926357	TR191	3K3J	R53,R97,R49,R63,R122,R127	6
926359	TR191	4K7J	R16,R20,R48,R99	4
926363	TR191	5K6J	R33	1
929231	TR191	6K49G	R94	1
926366	TR191	8K2J	R29,R56,R81,R125,R130	5
929198	TR191	8K25G	R4, R7	2
926368	TR191	10KJ	R40,R69,R75,R79,R102,R107	6
928823	TR191	10K5F	R13,R17	2
926543	TR191	15 KJ	R95	1
926370	TR191	18 KJ	R52	1
928870	TR191	22K1F	R91,R92	2
929250	TR191	23K7G	R11	1
926374	TR191	33 KJ	R70,R76,R80,R103,R108	5
926384	TR191	100 KJ	R3,R14,R19	3
926390	TR191	470 J	R73,R77,R90,R105,R110	5
926391	TR191	1 MOJ	R96	1
926509	TR192	100RJ	R57	1
926516	TR192	620RJ	R27	1
926740	TR193	560RJ	R22,R23,R25,R28	4
927611	TR510	62 JJ	R41,R45	2
Vybêr prio			R9	2
926152	TR191	348RG		
926153	TR191	365RG		
926154	TR191	383RG		
926155	TR192	402RG		
926151	TR191	332RG		

1	2	3	4	5
920622	KA206		D1, D2, D3, D4, D5, D6, D7, D8, D9	
920663			D10,D11,D12,D14,D15,D16	15
	KY130/80		D19, D20, D21, D22, D23, D24, D26	
			D27,D28,029	10
926230	KA222		025	1
925529	KZ260/	6 V 2	D13	1
927350	Kz260/	12	D17	1
925530	KZ140		018	1
925385	KC2378		T1, T2, T3, T5, T7, T13, T17, T21	
925036925037925038925027925028			T25, T29	10
	KC3078		T4, T6, T11, T15, T19, T23	6
	KC637		T8,T9, T10	3
	KC638		T27	1
	KD139		T14,T18, T22, T26	4
	KD140		T12,T16, T20, T24,T28	5
$\begin{aligned} & 925265 \\ & 925268 \end{aligned}$	M 17400		C4, C6, F1	3
	MH7404		D5, E5	2
925231	UCY7406N		D8	1
925351	UCY7407N		B8	1
927926	UCY7408N		C8	1
925270	MH7410		C5	1
927957	MH7438		F4, F5	2
925288	MH7474		B7, C3, D7, F2,F3	5
925368	UCY7486N		B5, C7	2
925354	UCY74123N		D2, D4, E2	3
925314	MC3470		101.	1
$\begin{aligned} & 928056 \\ & 928325 \end{aligned}$	K531LI3P		G5	1
	BM339		G2, G4	2
Vẏbĕr proxi oživeni			R60	2,5
929231	TR191	6K49G	(pro UCY74123)	
926480	TR191	6K81F		
929233	TR191	7K50G	(pro K155AG3)	
929198	TR191	8K25G		
Vẏbĕr proxi oživení:			R62	2,5
929242	TR191	14K7G	(pro UCY74123)	
929248	TR191	19K6G		
929249	TR191	20K5G	(pro K155AG3)	
929195	TR191	21K5G		
Vẏběr př̀i oživení:			C1	2
924866	TK724	680/P/M	pro UCY74123	
927521	TK724	820/P/K	prok155AG3	

deska nâhonu - použite lektronicke součastiky

1	2.	3	4	5
929353	TR192	220RJ	R174	1
926338	TR191	390R0	R135	1
926341	TR191	510RJ	R136	1
926537	TR191	680RJ	R147	1
926346	TR191	1 KOJ	R151,R155,R159	3
926347	TR191	1 K 2 J	R150,R154,R158	3
926355	TR191	2K2J	R137,R141,R145,R148,R152,	
			R156,R173,R178	8
926357	TR191	3K3J	R167,R168	2
926359	TR191	4K7J	R164	2
926363	TR191	$5 \mathrm{K6J}$	R169,R172	2
926366	TR191	8K2J	R149,R153,157	3
926368	TR191	10 KJ	R139,R143,R176,R180	4
926543	TR191	15 KJ	R175	1
926370	TR191	18 KJ	R171	1
926374	'TR191	33KJ	R138,R142,R146,R179	1
926384	TR191	100KJ	R163,R165,R166	3
926390	TR191	470KJ	R140,R144,R177,R181	4
926625	TR161	20KF	R160	1
odpor R161 - 1 kus - z následujicích hodnot:				
926482	TR191	8K06F	R161	
928812	TR191	8K25F	R161	
928652	TR191	8K45F	R161	
928813	TR191	8K66F	R161	
928653	TR191	8K87F	R161	
928654	TR191	9K09F	R161	
928817	TR191	9K31F	R161	
928818	TR191	9 K 53 F	R161	
928655	TR191	9 K 76 F	R161	
926205	TR191	10KOF	R161	
928820	TR191	10K2F	R161	
928823	TR191	10K5F	R161	
928825	TR191	10K7F	R161	
928656	TR191	11 KOF	R161	
928657	TR191	11 K 3 F	R161	
926439	TR191	11 K 5 F	R161	
926785	TR224	2 R 2 J	R162	1
927022	TK744	4/N/7/S	C60,C61, C62	3
927441	TK744	10/N/S	C54, C59	2
927093	TK754	100/P/K	C48	1
927060	TK782	68/N/Z	C70,C73,C74, C75,C76,C77	6
927068	TK783	68/N/Z	C56,C57, C58, C63, C64, C65	6
928111	TK794	390/P/K	C71	1
921470	TGL5155	A3/N/3/5/25	C53	1
920047	TGL5155	A6/N/8/5/25	C49	1

1	2	3	4	5
921541	TC206	100/N/J	C52	1
921546	TC208	6/N/8/J	C50	1
924820	TE134	1/MIKRO/5	C51	1
929634	TF007	100/MIKRO	c87	1
929620	TF009	100/MIKRO	C55	1
929640	TF010	22/MIKRO	C66, 668	2
920663	KY130/80		D44, 045,046, D47, D4F , D49	6
925385	KC237B .		Q42,Q46, Q50, Náhrada : KC507	3
925035	KC239C		Q37,Q39, Q52, Náhrada: KC509	3
925036	KC307B		Q38, Q40, Q44,Q48, Náhrada: BC177	4
925027	KD139		Q43,Q47, Q51, Náhrada : BD139,KT817G	3
925028	KD140		Q41, Q45, Q49, Náhrada : BD140,KT816G	3
925265	MH7400		2,3,4	3
927963	MH7442		5	1
925351	UCY7407N		1	1
928325	BM339		8 Náhrada : LM339	1
928330	BE555N		6	1
925240	B2600		7	1
926352	TR191	$1 \mathrm{K8J}$	R170	1
924837	TE132	11/MIKRO/S	C72	1

Vysvětlivky:

1. Objednací číslo

2: Typ
3. Hodnota
4. Označení na výkresu
5. Počet kusá pro jèdno provedení
ZBROJOVKABRNO státní podnik

1. $605.500, \mathrm{~L} 2$

27*00s:509 '

$$
F F F=F F=
$$

605.500, L1

Page 47/48

